
CS 6241 Final Project Report:
Extending Graph Convolutional Networks

to Edge Attributed Networks

Rohit Bandaru * 1

Abstract

The graph convolutional network (GCN) (Kipf
& Welling, 2016) is a powerful graph learning
framework that has been successfully applied to
different tasks. It is heavily inspired by convo-
lutional neural networks, but with less expressiv-
ity by treating all of the nodes neighbors equally.
This framework can be extended to use edge at-
tributes to learn more complex representations of
the adjacency matrix. I am proposing Edge and
Node Attributed Graph Convolutional networks
(EN-GCNs) to utilize more of the network data
in the machine learning approach. This approach
is applied to semi-supervised classification of the
Cora citation dataset (Sen et al., 2008).

1. Introduction
Convolutional neural networks have achieved start of the art
performance in many computer vision tasks. The intuition
behind these 2D image convolutions is that pixels are related
to nearby pixels and can be grouped into higher level fea-
tures. There is also translation invariance in CNNs, because
the same parameters are applied to all parts of the input.
Only the pixel’s neighbor’s are considered in computing
the output. CNNs and other standard neural networks are
powerful and efficient models for learning, but they do rely
on Euclidean data.

Graph convolutional networks (GCNs) (Kipf & Welling,
2016) are a method of applying neural networks to graph
data, which can be non-Euclidean. They can be used
for representation learning, community detection, or semi-
supervised classification.

Graph convolutional networks impose less constraints on
the input data compared to traditional CNNs. Convolutional

*Equal contribution 1Computer Science, Cornell Univer-
sity, Ithaca, New York. Correspondence to: Rohit Bandaru
<rb696@cornell.edu>.

neural networks require euclidean data. Images are rectan-
gular and pixels are adjacent to the same number of pixels.
GCNs however, have no constraint on the graph structure
and can work on non-Euclidean data. Images can be inter-
preted as graphs, with pixels being adjacent to the pixels that
are neighboring in the image. These neighbors are fixed and
Euclidean. However, most network data lacks this structure
and cannot be used with CNNs.

2. Graph Convolutional Networks
The standard graph convolutional network is formulated by
its forward path (Kipf & Welling, 2016).

H(l+1) = σ(AH(l)W (l)) (1)

A is the adjacency matrix. H(l) is the input feature matrix.
H(0) = X is the input data of shape (N,D0), where N is
the number of nodes and D is the feature vector. X can
be initialized as an identity matrix for node representation
learning and community detection. σ is a nonlinear activa-
tion function such as the rectified linear unit (RELU). W l is
the weight matrix, which contains learnable parameters. As
with a fully connected feed forward neural network, the in-
put dimension of a layer’s weights have to match the output
dimension of the previous layer’s weights.

In (Kipf & Welling, 2016) the adjacency matrix A is refor-
mulated to add a self loop that would include the node’s
own features, and also normalize based on degree.

A = D̃− 1
2 ÃD̃− 1

2 (2)

The adjacency matrix is Ã = A+IN . The identity matrix is
added to introduce self loops so that the GCN layers consid-
ers the node’s own features, in addition to its neighbors. The
diagonal degree matrix D̃ii =

∑
j Ãij is used to normalize

the adjacency matrix. This is to prevent nodes with high
degree from having significantly large outputs from GCN
layers. This formulation essentially takes the average of a
node and its neighbors when computing the output features
in the forward pass for a node.



CS 6241 Final Project Report

3. Node Attributed Graphs
Many network datasets have attributes for each node, in
addition to an adjacency graph. This is format that most of
GCN research focuses on.

In (Li et al., 2018), community detection is done on net-
works with node attributes and structural embeddings.

4. Edge Attributed Graphs
To calculate the forward pass for a node, GCNs take the sum
of the node and its neighbors. This is equivalent to having a
kernel of all ones in CNNs. In CNNs the kernel parameters
are trained and are more expressive.

Some datasets have attributes for each edge. This data can
be passed through the neural network so that it does not
treat each edge equivalently.

There is more limited research and datasets available for
attributed graph learning or community detection.

5. Related Work
(Gong & Cheng, 2018) attempts to extend both GCNs and
Graph Attention Networks (GAT) (Veličković et al., 2017)
to utilize multidimensional edge features. In their approach,
each edge feature is treated as a separate adjacency map.
The outputs of the graph neural network layer operation are
then concatenated for aggregation. My framework focuses
on using learnable parameters on the edge features. This
work is largely an extension of GAT to encompass GCNs
and multidimensional edge features.

6. EN-GCN
There are multiple variations of my approach. The problem
is formulated as follows. E is a matrix of shape (N,N,DE)
where DE is the dimension of the edge attribute feature
vector. E(ijk) is equal zero for all k if there is no edge
between nodes i and j in the adjacency matrix. H remains
the same as the input X = H0. There is also the weight
matrix W. EN-GCN appends additional weight matrices and
computations to the GCN framework.

The goals of this approach as two-fold:

1. Incorporate high dimensional edge features in the GCN
framework

2. Learn different and more robust representations of the
adjacency matrix for each layer

Not only is the goal to use edge attributes within the GCN.
The adjacency matrix should be propagated and dynamically
changed for each layer. Different layers would be analyzing

different patterns in the data and therefore interpret the
spatial structure of the graph differently. Therefore, it would
be intelligent to update the adjacency matrix for each layer.
There are multiple approaches to implement these goals.

Figure 1. The standard graph convolutional network uses the same
adjacency map for each layer

6.1. Independent Perceptrons for Weights

This approach seeks to learn a unique mapping from the
edge features to 1 dimensional edge weights.

H(l+1) = σ(EQ(l)H(l)W (l)) (3)

Q(l) is a weight matrix of shape (DE , 1). When multiplied
with the (N,N,DE) shaped edge feature matrix, it results
in a (N, N) matrix that can be substituted into the GCN
forward propagation in place of the adjacency matrix A.

This allows each layer to weight each feature differently in
computing the edge weight. Different layers may focus on
different edge features. One weakness of this approach is
that it is only a one layer linear network or a perceptron. It
cannot learn robust nonlinear representations of the edge fea-
tures. This shortcoming is addressed in the other approaches.
This approach will be called Independent Perceptrons for
Weights (IPW).

Figure 2. Three layer IPW network

6.2. Fully Connected Neural Network for Adjacency
Matrix

This approaches seeks to have a forward propagation of the
adjacency matrix, rather than use the same one in each layer.
Both the node feature activations (H) and the edge feature
activations (E) are propagated. Here we have edge feature
propagations instead of using the same initial edge features



CS 6241 Final Project Report

Figure 3. Three layer CPW network

matrix.
H(l+1) = σ(F (l)Q(l)H(l)W (l)) (4)

F (l) = F (l−1)R(l) (5)

F represents a propagated edge feature matrix. It is ini-
tialized to F 0 = E. R(l) is a weight matrix of shape
(Dl−1

R , Dl
R). D0

R is equal to DE . This is a neural feed-
forward neural network on the edge feature matrix. It uti-
lizes tensor multiplication as F is a three dimensional tensor.
This approach will be called Connected Perceptrons for
Weights (CPW).

6.3. Deep Regression of Weights

This approach replaces the single layer perceptron in IPW
with a multi-layer perceptron. However, having differ-
ent neural networks for every layer may lead to over-
parametrization. The weights are shared for each layer.

This does not allow for unique representations of the adja-
cency matrix for each layer, but allows for learning on the
edge feature attributes for a graph learning task. This ap-
proach will be called Deep Regression of Weights (DRW).

Figure 4. Three layer DRW network

7. Experiments
7.1. Implementation

PyTorch is being used as it allows for simple parameter
learning and neural network configuration. The deep learn-
ing features such as parameter initialization and optimizers
are also built in.

A challenge in the implementation was the edge feature
matrix (E). It is large three dimensional matrix. For the

Cora dataset it is of size (2708, 2708, 1433), which is over
ten billion parameters. This cannot fit in memory, but the
matrix is very sparse. PyTorch has weak support for sparse
3D matrices. To go around this, E is reshaped to be 2D
and reshaped again after the tensor multiplication. PyTorch
also does not support slicing sparse tensors. This requires
constructing the sparse tensors by iterating through indices
manually.

7.2. Reddit

The algorithm proposed can be applied to the Reddit Hyper-
link Network and User and Subreddit Embeddings dataset
(Kumar et al., 2018). The nodes represent different subred-
dits. The edges are directed and represent one subreddit
having a hyperlink to another in a post. This dataset con-
tains attributes for nodes and edges. The node attributes
are embeddings based on which users post in the subreddit.
The edge is attributed with a 80 features extracted from the
text of the post containing the hyperlink. These are hand-
crafted features such as number of uppercase characters and
VADER (Hutto & Gilbert, 2014) sentiment.

The dataset can contain multiple edges between the same
pair of nodes. The approaches I have outlined are incom-
patible with this. As a pre-processing step, the mean of the
feature vector is taken. Adding additional features, such
as number of initial edges or standard deviation of features
could be useful.

However, this dataset cannot be used for this project. It
has node and edge attributes but no node labels to used
for classification. It would be interesting to annotate the
subreddits into different classes.

7.3. Cora

The Cora citation dataset (Sen et al., 2008) is a citation
network dataset of papers in artificial intelligence. It contain
2708 papers. Each node represents a paper and has a feature
vector of size 1433. This is a bag of words vector, where
the values of either 0 or 1, representing whether a word is
present in the paper. The nodes are classified into seven
classes, which are subfields such as ”genetic algorithms”
and ”theory”. There are 5429 edges in the graph which
represent citations. The dataset does not come with edge
attributes. However, edge feature vectors can be simulated
by taking the mean of the vectors. The edge feature vector
would indicate which words are shared between the papers.
Sharing certain key words can indicate that two papers are
closely related.

7.4. Other Datasets

There are more limited options to find edge attributed net-
work datasets. This approach can be demonstrated on ran-



CS 6241 Final Project Report

dom or simulated edge and node attributed network datasets.

8. Results
The algorithm was evaluated using the Cora dataset. The
data was split into training, validation, and testing sets. The
same split as (Kipf & Welling, 2016)(140 training, 300
validation, and 1000 for testing) were used for comparison.
The final results from the testing set are as follows.

GCN IPW CPW DRW

81.0% 72.2% 62.2% 69.9%

The models were trained for 200 epochs, however CPW and
DRW were stopped early after losses remained stable. The
Adam optimizer (Kingma & Ba, 2014). The learning rate is
set to 0.01. Weight decay is set to 5E-4. There is Dropout
(Srivastava et al., 2014) of p = 0.5. Cross entropy loss is
used for classification training. Rectified linear units are
used as activation functions.

8.1. GCN

As a baseline, the GCN algorithm was implemented and
tested alongside the three other architectures discussed in
this report. The accuracy of (Kipf & Welling, 2016) is
achieved. There are two layers with a hidden unit size of
100.

Figure 5. GCN Training

8.2. IPW

IPW replaces the adjacency matrix of GCN with a inde-
pendently learned one for each layer. There is a learnable
weight vector (Q) of size (d, 1) for each layer. These pa-
rameters are learned alongside the GCN weight parameters.

Figure 6. IPW Training

8.3. CPW

CPW adds a weight matrix (R) for each layer to update the
edge feature matrix. This implementation uses a hidden unit
size of 100.

8.4. DRW

DRW replaces Q and R with a multilayer network to learn
an adjacency matrix from the edge feature matrix. For
computational feasibility, this networks needs to be very
small. It has two layers with a hidden unit size of 100.

9. Efficiency
One major drawback of applying a neural network on an
edge feature matrix is that is computationally expensive.
The time (seconds) to compute the forward pass on the Cora
dataset for one epoch is shown:



CS 6241 Final Project Report

Figure 7. CPW Training

Figure 8. DRW Training

GCN IPW CPW DRW

0.012 s 0.205 s 7.023 s 8.13 s

10. Discussion
The new GCN architectures proposed in this report fail to
improve upon the performance of graph convolutional net-
works (Kipf & Welling, 2016) on the Cora dataset. However,
these new approaches focus on leveraging edge attribute
data. The edge attributes for the Cora dataset were derived
from the node features. IPW, CPW, or DRW might out-
perform GCN on a dataset that has distinct edge and node
attributes, as well as node labels for classification.

The problem shown in the experiments is overfitting. The
accuracy follows the trend of number of parameters. GCN
has the least parameters, so it overfits the least. While CPW
has the most, and has the lowest accuracy. To further show
this, a DRW network with only one R layer was tested. This
would be adjacency matrix learning approach with the least
number of parameters. This achieved a testing accuracy of
77.6%, which is above IPW, CPW, and DRW, but still below
GCN. More research and experimentation is required to see
how to address the problem. Traditional approaches such
as increasing dropout and weight regularization were not
effective. Perhaps, these methods would excel on larger and
more complex datasets, as overfitting would be less likely.

This approach may also be useful for to learn node repre-
sentations that include node attributes, edge attributes, and
graph structure. This can be done on the Reddit dataset.

The code for this project is available at: https://
github.com/RohitBandaru/EN-GCN.

References
Gong, Liyu and Cheng, Qiang. Adaptive edge

features guided graph attention networks. CoRR,
abs/1809.02709, 2018. URL http://arxiv.org/
abs/1809.02709.

Hutto, Clayton J and Gilbert, Eric. Vader: A parsimonious
rule-based model for sentiment analysis of social media
text. In Eighth international AAAI conference on weblogs
and social media, 2014.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Kipf, Thomas N. and Welling, Max. Semi-supervised clas-
sification with graph convolutional networks. CoRR,
abs/1609.02907, 2016. URL http://arxiv.org/
abs/1609.02907.

Kumar, Srijan, Hamilton, William L, Leskovec, Jure, and

https://github.com/RohitBandaru/EN-GCN
https://github.com/RohitBandaru/EN-GCN
http://arxiv.org/abs/1809.02709
http://arxiv.org/abs/1809.02709
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907


CS 6241 Final Project Report

Jurafsky, Dan. Community interaction and conflict on
the web. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, pp. 933–943. Interna-
tional World Wide Web Conferences Steering Committee,
2018.

Li, Ye, Sha, Chaofeng, Huang, Xin, and Zhang, Yanchun.
Community detection in attributed graphs: an embedding
approach. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Sen, Prithviraj, Namata, Galileo, Bilgic, Mustafa, Getoor,
Lise, Galligher, Brian, and Eliassi-Rad, Tina. Collective
classification in network data. AI magazine, 29(3):93–93,
2008.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
a simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Veličković, Petar, Cucurull, Guillem, Casanova, Aran-
txa, Romero, Adriana, Lio, Pietro, and Bengio,
Yoshua. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.


