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Abstract

Current methods for structured kernel interpola-
tion (SKI) of Gaussian processes (GPs) use either
simple local cubic interpolation or computation-
ally expensive GP interpolation. In this project,
we investigate scalable kernel interpolation us-
ing compactly-supported kernels (CSKs) to in-
crease the accuracy of SKI while maintaining
tractability. Kernel interpolation with CSK GP
regression is theoretically favorable because it is
a tractable, expressive, and tunable interpolation
method. In this paper, we show how GP regres-
sion with CSKs can be used to perform scalable
kernel interpolation. Experiments demonstrate
that for many kernels this method can achieve
higher interpolation accuracy per unit time than
state-of-the-art kernel approximation, KISS-GP.
We also show that CSK hyperparameters can be
automatically tuned via marginal likelihood max-
imization. However, in several experiments it is
shown that this method does not achieve signif-
icantly higher regression accuracy compared to
KISS-GP.

1. Introduction

Gaussian processes (GPs) are valuable Bayesian non-
parametric probabilistic models due to their flexibility,
being universal approximators (Rasmussen & Williams,
2006), and due to their ability to encode strong inductive bi-
ases via the covariance kernel. For these reasons, they have
been used successfully in many applications, especially
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those requiring predictive uncertainty estimates. However,
the naive computational complexity of GP learning and in-
ference has historically prevented GP usage on data sets
with a large number of examples. Denote the number of
training examples as n. The traditional method for calculat-
ing the predictive distribution and the marginal likelihood
of a GP involves calculating the Cholesky decomposition
of the n X n covariance matrix, which requires (’)(n3) com-
putations (Rasmussen & Williams, 2006). Both exact and
approximate scalable Gaussian process methods have been
developed to reduce this running time.

In particular, inducing point methods approximate Gaus-
sian processes’ kernels by evaluating the kernel on a set of
chosen “inducing” points rather than on the entire dataset.
Scalable kernel interpolation' (SKI) is an inducing point
method that approximates the kernel by interpolating the
kernel at data points using inducing points, which are cho-
sen with structure to permit fast linear algebra. Separately,
compactly supported kernels have been derived as replace-
ments for standard kernels that reduce the computational
complexity of GP inference by inducing a sparse covari-
ance matrix.

In this work, we build upon previous inducing point meth-
ods by extending the SKI framework to interpolation by
zero-noise Gaussian processes with compactly supported
kernels, and refer to the method as CSK-SKI. Finding si-
multaneously fast and accurate kernel interpolants is inte-
gral to the success of the SKI framework because faster in-
terpolation results in more scalable SKI GP inference, and
more accurate interpolation requires fewer inducing points,

"While (Wilson & Nickisch, 2015) use SKI and KISS-GP in-
terchangeably, we shall refer to the framework as SKI and to SKI
using local cubic interpolation as KISS-GP to make a distinction
between the particular choice of interpolation and the framework
itself.
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which again results in more scalable SKI GP inference. In
this work, we implement efficient, arbitrary-dimensional
CSK-SKI with NumPy. To study CSK-SKI, we perform
the following experiments: (1) we analyze the asymptotic
run-time of CSK-SKI; (2) we measure the kernel interpo-
lation accuracy and running time of CSK-SKI varying tun-
ing parameters, CSKs, and base kernels; (2) we measure
the kernel interpolation accuracy and running time of CSK-
SKI in increasingly high dimensions; and (3) we measure
the regression accuracy with both synthetic data and noisy
real-world data. Additionally, we experiment with infor-
mative prior means for the interpolating GP. Finally, we
demonstrate how CSK hyperparameters can be automati-
cally tuned with constraints on computational cost.

To the authors knowledge, this is the first application of
CSKs to kernel interpolation and the first detailed study
comparing the de facto local polynomial interpolation to
alternative interpolation methods in the context of kernel
interpolation. To the authors knowledge, it is also the first
work to use automatically tunable kernel interpolation or to
perform compactly supported kernel learning.

2. Background & Related Work

2.1. Gaussian Process Inference & Learning

For a given dataset of n input vectors X = {xX1,...,Xn}
and n scalar responses y = (y(x1),-..,y(xn)) ", a Gaus-
sian process (GP) is a collection of random variables for
whom any finite subset has joint Gaussian distribution.
We use GPs to define distributions over functions f(x) ~
GP(u, k) where any collection of function values f has
joint Gaussian distribution:

£ = £(X) ~ N (1, K) (1)

with mean vector u; = u(x;) and n X n covariance matrix
K. The covariance kernel of a GP, as well as its hyperpa-
rameters 6, controls the GP’s smoothness and generaliza-
tion properties. The predictive distribution of a GP mod-
eled with white observation noise on n, test points X, is
given by:

f.X.,X,y,0,0% ~ N(f.,cov(f.)) (2)
f.=px. + Kx. xKxx + I Yy —ux) 3

COV(f*) = mex* — KX*,X[KX,X + 0'21]71KX,X*
4)

K, x denotes the cross-covariance matrix between X
and X, and px, is the mean vector for the test points. To
obtain the marginal likelihood of the data, we can marginal-
ize f(x) conditioned on 6:

log p(yl0) —[yT(K9+02I)_1y+log |K9+021H (5)

To perform inference and learning, i.e. calculate the pre-
dictive distribution and marginal likelihood, we must com-
pute (K + 02I)~ 'y and log |K + 021| respectively. This
is the computational bottleneck for GP inference and learn-
ing, and the source of inefficiency on large datasets.

2.2. Scalable GP Methods
2.2.1. INDUCING POINT METHODS

In response to the intractability of GP learning and in-
ference on large datasets, two major classes of methods
were developed to circumvent such limitations. Inducing-
point methods seek to reduce the computational complex-
ity by approximating the GP with m (usually m < n)
“inducing” points instead of the n training points directly
(Quifionero-Candela & Rasmussen, 2005). Inducing-point
methods such as subset of regressors (SoR) (Silverman,
1985) and fully-independent training conditional (FITC)
(Snelson & Ghahramani, 2006) that do not exploit training
data structure unfortunately still require O(nm?) compu-
tations. Therefore, to be tractable, the number of inducing
points must be small, prohibiting the accuracy of the ap-
proximations.

2.2.2. STRUCTURE-EXPLOITING METHODS

Structure-exploiting methods make use of structure in
the covariance matrix, such as Kronecker, Toeplitz, or
Hadamard-product structure, for fast matrix operations
(Saatci, 2012). However, these methods are restrictive to
data that exhibit gridded structure.

2.2.3. SCALABLE KERNEL INTERPOLATION

The SKI framework, introduced in (Wilson & Nickisch,
2015), combines inducing point methods with structure ex-
ploitation.

SKI builds upon a simple approach to make GP inference
and learning scalable; an inducing point method called Sub-
set of Regressors (SoR) (Silverman, 1985). Given a base
kernel function k(x, z) to approximate, and a set of m in-
ducing points U = [u;]i=1...m, the SoR kernel approxima-
tion is :

Ksor = Kx.u Ky Kux, (6)

where Kx 7, Ky v, Ky x atethe n X m,m x m,m xn
(cross-)covariance matrices generated from the base kernel
k. In the SKI framework, the inducing points are taken to
be on a grid, which allows for fast matrix operations with
Ky,u by structure-exploiting methods. However, the cross
covariance matrix Ky ;y has no such structure, so matrix
computations with it are slow. Therefore, the authors of
(Wilson & Nickisch, 2015) interpolate the cross-covariance
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with a matrix of interpolation weights W:
Kxuv~WKyu (N

The SKI kernel approximation is then derived by replacing
the cross covariance matrix in equation (6) with its interpo-
lation, yielding:

KX,X ~ KX,UK[}}]KU,X (8)
~ WKUJ]K[;}]KU,UWT (9)
=WKyuW ' 2 Kss.cp- (10)

In (Wilson & Nickisch, 2015), the authors use local cubic
interpolation to compute W, which results in W being ex-
tremely sparse. Because sparse matrix operations with W
are so fast, many more inducing points are permitted than
in other inducing point methods, which results in more ac-
curate, scalable kernel approximations.

If it is assumed that X is 1-dimensional, Ky will have
Toeplitz structure, allowing O(mlogm) matrix-vector
multiplications. Since W is sparse, matrix-vector multi-
plications with Kgky only cost O(n + mlogm) computa-
tions and O(n + m) storage. If the data is d-dimensional
and K 7 exhibits Kronecker structure, matrix-vector mul-
tiplications with K g cost O(n+dm!* ) operations and
O(n+dm ) storage. Inference is performed by using Con-
jugate Gradient (CG) Optimization with fast matrix-vector
multiplications (MVMs) to solve KgléstPy, which con-
verges to within machine precision in j < n iterations.
Learning is performed by computing log|Kxiss.gp| =
>, logVi; where V' is a diagonal matrix of eigenvalues
yielded from the eigendecomposition Kjss.gp = QvVQT
Importantly, the full covariance matrix over the training
data is never computed during inference or learning with
KISS-GP, which allows for fast computations (Wilson &
Nickisch, 2015).

Notably the SoR approximation can itself be seen as a SKI
approximation using zero-noise, zero-mean GP regression
with the base covariance kernel k itself:

Ksor = KX,UK[}_}JKU,UK[}}]KU,X~ (1D)

However, the interpolation weights are still not sparse,
making SoR very computationally expensive, still.

While local cubic interpolation may work well in certain
interpolation tasks, we should not expect that it will per-
form well in every interpolation task. Additionally, since
the method of local cubic interpolation via convolution as
described by (Keys, 1981) and used by (Wilson & Nick-
isch, 2015) cannot be tuned in any way, it cannot adapt bet-
ter fit to kernel at hand, even if we have the exact analytical
form of the function which it interpolates. This suggests
that one may achieve more accurate kernel approximations
by exploring alternative fast interpolants.

2.2.4. COMPACTLY SUPPORT KERNELS

A separate approach to scalable GPs is the use of compactly
supported kernels (CSKs). CSKs are kernel functions pos-
sessing finite local support and accordingly sparse covari-
ance matrices. Research in this area has primarily focused
on finding valid CSKs (Chernih et al., 2014) and the ad-hoc
construction of CSKs to entirely replace standard kernels
used in GP inference and learning in order to achieve scal-
ability over large datasets (Zhang et al., 2004). However, it
is inherently impossible for large length-scales to be well-
represented by CSKs because the covariance is necessarily
zero between pairs of points outside of the support, which
must be small to maintain tractability. Thus, the wholesale
replacement of kernels by constructed CSK counterparts is
not warranted unless the GP performs local interpolation.

An alternative method of using CSKs for scalable GP re-
gression is to use a prior mean determined by a separate
(fast) regressor so that large-scale variation is captured by
the prior mean, and small-scale variation is captured by the
compactly supported covariance kernel (Kaufman et al.,
2011). This approach largely defeats the purpose of us-
ing GPs for general modelling purposes, as the compactly
supported kernel only accounts for small-scale local regres-
sion.

There are many potential choices of CSKs to use for a par-
ticular task. While the interpolating kernel need not be sta-
tionary itself, we limit the scope of our study to stationary
CSKs because most kernels which we seek to interpolate
are functions whose behavior is not significantly different
over its support. In this work, we consider several fami-
lies of compactly supported radial basis functions, includ-
ing the Wendland functions (Chernih et al., 2014), the trun-
cated power function (Gneiting, 2001), the Wu functions
(Wu, 1995), and Euclid’s Hat (Gneiting, 1999). To the au-
thors’ knowledge, these are the most commonly used extant
CSKs.

These are stationary kernels that are monotonically de-
creasing as distance increases, similar to the squared ex-
ponential or Matern kernels. Also similar to the Matern
kernel, each of these families possess a smoothness param-
eter g. That is, as one increases the smoothness parame-
ter, one obtains smoother kernel functions, which result in
smoother functions sampled from a GP with corresponding
covariance kernel. Additionally, one cannot generally find
kernels that are compactly supported in arbitrary dimen-
sion, so most families also possess a dimension parameter
s, such that a kernel is compactly supported in d < s di-
mensions.

For illustration, example kernels of the Wendland family
of functions are shown in figure 1. We have also included
in Appendix C plots of each of these CSKs and samples
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drawn from their GPs. Such plots help one develop intu-
ition for which kernel is the most likely perform best in a re-
gression or interpolation task. Other compactly supported

Wendland Kernels
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Figure 1. Wendland family kernels as the smoothness parameter ¢
is varied.

kernels can be derived from existing compactly supported
kernels. Simply multiplying a valid kernel by a compactly
supported kernel creates a new compactly supported kernel
with the same support.

3. Methodology

3.1. Compactly Supported Kernels Gaussian Processes
for Kernel Interpolation

In this work, we test the hypothesis that one may achieve
a better tradeoff between kernel interpolation accuracy and
computational efficiency by combining scalable kernel in-
terpolation and compactly supported kernels. In particu-
lar, we propose an extension of the SKI framework by re-
placing the local cubic interpolation strategy of KISS-GP
with CSK GP kernel interpolation. We term this use of
GPs with compactly supported kernels for interpolation in-
tegrated within the SKI framework, CSK-SKIL.

Because the support of a CSK is bounded in Euclidean
space, the resulting covariance matrix is sparse, which can
be exploited for computational efficiency. (Rasmussen &
Williams, 2006) (Zhang et al., 2004). Additionally, as
kernel methods themselves, GP kernel interpolation with
CSKs allow the direct encoding of various structural prop-
erties of the interpolated kernel function. This is why we
believe their use has much potential to significantly outper-
form KISS-GP in terms of accuracy, while still remaining
competitive with respect to run-time. Moreover, CSKs use
trainable hyperparameters, e.g. length scales, which can be
optimized using the marginal likelihood. By specifying a

prior over CSK length scales, one may impose constraints
on the sparsity of the covariance matrix. Finally, by com-
bination with other kernels, it is possible to perform com-
pactly supported kernel learning for the purpose of kernel
interpolation.

The CSK-SKI method uses a similar formulation to the
other SKI methods, SoR and KISS-GP. Howeyver, its inter-
polations are performed by a zero-noise, zero-mean Gaus-
sian process with a compactly supported kernel. The ap-
proximation is:

Kx x =~ KX,UK[}_}]KU,X (12)
~ BxuBp yKvuBy yBxu (13)
£ Kcskski (14)

Bx p is the n x m cross-covariance matrix for a given CSK
between training data points and inducing points, and By i/
is the m X m covariance matrix over the inducing points for
the same CSK.

Note that, in fact, the CSK-SKI kernel is in fact a valid
covariance kernel, because it is guaranteed to be positive
definite. This is because the positive definiteness of Ky i/
implies the positive-definiteness of Q " K17 7@ for any m x
¢ matrix ) for any ¢. Thus, the CSK-SKI kernel is valid
because:

[Bx,uByyl' =ByyBxu- (15)

3.2. Computational Efficiency

By construction, Bx y is sparse, and By is a sparse,
symmetric matrix. In the 1-dimensional case, By, is also
a banded matrix whose bandwidth is determined by the
support of the CSK and the spacing of the inducing point
grid.

More generally, for dimensionality d and CSK support s

and grid spacing A, both By and By, have (2Lij)d

non-zero elements per row. For small bandwidth b = | X |,
the level of sparsity is similar to the weight matrices of

KISS-GP, which have 49 non-zero elements per row.

Similar to KISS-GP, we can perform fast matrix multipli-
cations to perform efficient inference and learning. Specif-
ically, we can compute the matrix-vector multiplication
(MVM) Kcskskrv by using fast MVMs for each com-
ponent. In the 1-dimensional case, the MVM for By x
takes O(bn) time due to sparsity. Solving the linear sys-
tem B[;}UV takes O(b*m) time, since By, is a sym-
metric, banded, Toeplitz matrix. The MVM with Ky
takes O(mlogm) due to its Toeplitz structure. There-
fore, a MVM with Kcsi_ sk takes O(b*m + bn +
mlogm) time. Inference may then be performed comput-
ing Kok sy efficiently using Conjugate Gradient Opti-
mization, which only depends on fast matrix multiplica-
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tions.

If data are d-dimensional (d > 1), then fast MVMs are
still possible, provided base kernel Ky yy and interpolat-
ing kernel By, exhibit Kronecker structure. In this case,
Ky,yv and BE}UV can both be computed in O(dm!*)
time (Wilson et al., 2014). Note, though, that m is the total
number of inducing points, which depends on the dimen-
sionality: if there are m’ inducing points in each dimen-
sion, m = (m')?. However, when K1y and By are
Kronecker products, MVMs and linear system solves de-
compose into successive matrix multiplications of the ma-
trices of the Kronecker product (Schicke). Since the Kro-
necker multiplicands are themselves structure kernel matri-
ces, MVMs are actually much faster to calculate.

However, most compactly supported kernels cannot be de-
composed as a product across dimensions. Most are piece-
wise polynomials of the Euclidean distance between points.
For instance, an example kernel from the Wu family of
functions is

¢33(7) = (1 — 7)1 (16 + 297 + 2072 + 57%).

Nevertheless, one can construct CSKs that do exhibit such
structure. If

and k; and ko are valid kernels, then k(x,a’) =
ki(xq,x),)ko(xp, ;) is a valid kernel. Moreover, if k;
and ko are compactly supported kernels, the result is itself
a compactly supported kernel. In this way, we construct
CSKs whose covariance matrix is a Kronecker product.
The computational efficiency of CSK-SKI is empirically
evaluated in section 4.

3.3. Non-zero Mean

In the process described thus far, the CSK-based GPs used
for kernel interpolation used a zero prior mean. However,
we surmised that because the kernel interpolation task itself
has zero noise, and we know exactly what function it must
approximate, that using a nonzero mean function could al-
low us to interpretably and simply encode such knowledge
into said GPs, potentially yielding greater interpolation ac-
curacy (Rasmussen & Williams, 2006). In (Kaufman et al.,
2011), the authors describe a framework for application of
CSKs within noiseless GP regression contexts involving fit-
ting a simpler regression model (e.g. local polynomial re-
gression) to the data, and then training a GP on the resid-
uals. This was done to compensate for the inherent limita-
tions of CSKs when expressing covariances between points
in the input domain (i.e. that covariances between inputs
very far away from each other are assumed to be 0). This

process is equivalent to use of the simpler regression model
as the mean function for the GP itself; the simpler regres-
sion model is intended to model any large-scale variation
within the input domain, with the compactly-supported ker-
nel itself only modelling small-scale variation adequately
captured by a kernel with compact support.

As a way of potentially improving CSK-SKI interpolation
accuracy per unit time, we experimented with this method
for our interpolation task by computing a bicubic kernel
interpolant and reconstructing the covariance matrix of a
chosen base kernel, the very interpolant used in KISS-GP
(Wilson et al., 2014). Then, we proceeded to compute the
residuals and use them as targets for our CSK-based GP
interpolants. The Wendland CSK was used for these exper-
iments. During prediction, we simply added back the inter-
polation values computed by the original bicubic method
to those computed by our CSK GP to get the final kernel
value predictions.

These experiments did not yield good approximations for a
variety of base kernels (see Sec 4.3)and therefore, we pro-
ceeded with all other experiments using a simple zero GP
mean for the CSK GP interpolant.

3.4. CSK Hyperparameter Learning and Tuning

As described before, one benefit to using CSK GP regres-
sion as a kernel interpolant is that the interpolant can be au-
tomatically tuned to fit the interpolation task at hand. One
simple approach is to simply first learn GP hyperparame-
ters in a kernel regression task constructed from inducing
points.

This procedure is as follows: one first determines the kernel
which is to be interpolated. Then, one determines the num-
ber of inducing points that will yield tractable inference.
Inducing points are generated and the kernel is evaluated at
each distance (e.g. if there are m inducing points that are A
far apart, the kernel is evaluated at k£(0), k(A), ..., k(mA)).
Then, kernel learning is performed normally on this con-
structed data set. That is, CSK hyperparameters of the
interpolating GP are learned via maximizing the marginal
likelihood. This task will not be computationally intensive
since the CSK is sparse, provided fast banded matrix oper-
ations are available. Additionally, the task does not depend
on the number of true data points, though the number of
inducing points could be large.

However, if the CSK length scales are updated via uncon-
strained optimization, it is possible for the learned length
scales to become too large for tractable kernel interpola-
tion, since length scales directly correspond to CSK sup-
port. As a solution, one can place a prior the length scale
parameter to penalize high length scales. This acts as a soft
constraint on the support of the CSK.
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An experiment demonstrating this process is described in
section 4.6.

3.5. Implementation

GPyTorch is a powerful python library enabling quick cre-
ation of GP models for a variety of different tasks. Al-
though integration of our CSK-SKI methodology within
this framework alongside the extant KISS-GP implemen-
tation is desirable in the long run, we chose to implement
CSK-SKI from scratch using NumPy, SciPy, and band-
mat python libraries (Travis E, 2006) (Jones et al., 2001-)
(Shannon, 2018) for construction of and operations with
banded matrices. Currently, efficient banded matrix solu-
tion routines are implemented within LAPACK, and by ex-
tension, SciPy, but we are not aware of any corresponding
PyTorch implementation. However, we fully believe that
LAPACK banded matrix operations will be added to Py-
Torch in future, at which time CSK-SKI could be imple-
mented in GPyTorch. Nevertheless, the simplicity of our
implementation gives us more control over the implemen-
tation and facilitates development and benchmarking. Sim-
ilarly, KISS-GP was implemented using only SciPy and
NumPy for purposes of comparison. We expect that com-
parisons made with our implementation will extend to po-
tential future implementations in GPyTorch.

4. Experiments

To test CSK-SKI and compare against the benchmark set
by KISS-GP, we performed several experiments. The ex-
periments include a matrix-vector multiplication run-time
analysis, comparisons of running time versus kernel in-
terpolation accuracy on varied base kernels, regression on
zero-noise synthetic data, regression on noisy, real-world
datasets, and learning the CSK hyperparameters.

4.1. Run-time of Matrix-Vector-Multiplications

We benchmarked each of the component calculations to
verify that their quasi-linear running time with respect to
the number of inducing points. Each matrix-vector mul-
tiplication against randomly generated target vectors was
performed five times, with the average time taken over the
trials. For this experiment, the bandwidth of the CSK was
set to 6, which was chosen to reflect the fact that CSK-SKI
generally performs best with more bandwidth than that of
KISS-GP. The results of this experiment are shown in fig-
ure 11. Interestingly, we found that the Toeplitz matrix-
vector multiplication was by far the most expensive step in
CSK-SKI MVMs. This result implies that having a larger
bandwidth than 2, as in KISS-GP, does not make CSK-SKI
dramatically more expensive.

Linear scaling of fast matrix-vector multiplies/solves

—— banded solve
Toeplitz MVM
banded MVM
sparse MVM
CSK-SKI MVM
KISS-SKI MVM

Time (seconds)
o o o o
w H wv o
L )

o
N

o
-

o
o
L

0 50000 100000 150000 200000 250000 300000 350000 400000
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Figure 2. Running time of component MVMs in CSK-SKI
MVMs.

4.2. Covariance Matrix Reconstruction

As a preliminary test, we replicate an experiment per-
formed in (Wilson & Nickisch, 2015) to compare our CSK-
SKI kernel approximation with the true full RBF kernel.
We sample 1000 data points from A/(0,25) and compute
the full covariance matrix on this data after sorting. For
both KISS-GP and CSK-SKI, 40 inducing points were used
on a regular grid to interpolate the kernel. The bandwidth
was chosen to be 4, because in this case both the running
time and mean absolute error is approximately equal for
both CSK-SKI and KISS-GP. The interpolation errors are
shown in figures 3 and 4. We also show the values of the
kernel against values of 7, to provide further insight into
the interpolations.

It is noteworthy that all of the error for the CSK interpola-
tion is positive, meaning that in this case the interpolation
does not over-estimate the covariance. While it is possi-
ble for a zero-noise, zero-mean Gaussian process to over-
estimate its function, the length scale of the CSK is small
enough such that covariance between inducing points and
interpolated points is relatively small. This causes the in-
terpolating GP to revert back to its zero mean. While, as
noted in 3.3, our attempts to create an informative prior
mean did not prove beneficial, in some applications one
may still prefer the kernel approximation to under or over
estimate covariance, in which case one can choose the prior
mean appropriately.

To examine accuracy per-unit time, we tested multiple con-
figurations of Wendland CSKs (figure 5) and the product
kernel of RBF and the truncated power function (figure 6)
and measured the mean absolute kernel interpolation er-
ror versus computation time, varying the number of induc-
ing points between 500 and 2000 by increments of 150.
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Figure 3. Difference between CSK-SKI reconstruction and true
covariance matrix. CSK-SKI used Wendland CSK with ¢ = 2
CSK, bandwidth=4, and 40 inducing points.

The RBF-CSK interpolation is very poor compared to ei-
ther Wendland CSK or KISS-GP interpolation. However,
the Wendland CSK kernel interpolation is very competitive
with KISS-GP. While KISS-GP is very fast, the Wendland
CSK with smoothness parameter ¢ = 2 and bandwidth
b = 100 has an order of magnitude lower interpolation
error while being only roughly twice as computationally
expensive. Indeed, if one uses fewer than 500 inducing
points, the Wendland CSK with bandwidth 6 = 100 and
smoothness ¢ = 2 achieves significantly higher accuracy
per unit time than local cubic interpolation.

A similar analysis was repeated for a variety of base ker-
nels other than RBF, varying the number of inducing points
between 400 and 4000 by increments of 150. The base
kernels examined included the Ornstein-Uhlenbeck (OU),
Matern (MA), Periodic (PER), Local-Periodic (L_PER),
Rational-Quadratic (RQ), Spectral-Mixture (SM), and 3
“combination” kernels defined respectively as:

combl = RQ x RBF x L_PER (16)
comb2 = RQ x RBF + L_PER (17)
comb3 = RBF x PER x L_PER + RBF x RQ  (18)

The results of these analyses are displayed in Appendix
D in Figures 22-30. Generally we observed a significant
outperformance in interpolation accuracy with at least one
tuning of CSK-SKI over KISS-GP for all of the base ker-
nels tested except for OU, SM, and comb4, where CSK-
SKI was only competitive with KISS-GP in terms of accu-
racy achieved, albeit at a marginally higher computational
cost. We understand that this result is due to the fact that

K_true - K_kiss
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Figure 4. Difference between KISS-GP reconstruction and true
covariance matrix. KISS-GP used 40 inducing points.

the OU kernel more quickly varies than other kernels; be-
cause the Wendland CSK is constructed to replicate the
behavior of the extremely smooth RBF kernel, the CSK-
based GP interpolation proves inadequate for very quickly
varying kernels. The results for the SM kernel were some-
what surprising, but can potentially be explained by the fact
that hyperparameters were set arbitrarily rather than being
determined by training on a particular data set, potentially
yielding a quickly varying kernel similar to OU for which
CSK-SKI is a poor interpolant. We suggest CSK-SKI’s
performance for the OU and SM kernels as base kernels,
as an interesting area for further examination.

We note that our results show that error does not always de-
crease with the number of inducing points. Our hypothesis
as to why this can occur is because some of the decrease
in error due to increased number of inducing points can be
offset by greater inaccuracy due to more of the CSK’s sup-
porting points lying outside of the inducing point grid lead-
ing to worse interpolation in those locations. This could
potentially be remedied in a similar fashion as in KISS-GP,
by adding more points outside of the grid. Addressing this
issue would be an interesting area of further work.

We repeated a similar suite of experiments analyzing a va-
riety of CSKs belonging to two other families: the Wu and
Euclid’s Hat functions. However, these CSKs yielded simi-
lar results to those we present here for the Wendland CSKs

4.3. Synthetically-Generated Data Set

In practice, one seeks regression inference accuracy, not
just kernel interpolation accuracy. Two kernels approxima-
tions with similar approximation error could perform worse
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Kernel Interpolation Error vs. Computation Time
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Figure 5. Wendland CSK SKI performance versus time compared
to KISS-GP.

in regression depending on the distribution of the error. To
prove that the CSK-SKI kernel approximation is not detri-
mental to regression accuracy, we created a toy data set us-
ing the function sinc(x) = sin@) we uniformly sampled
10,000 points from this univariate function and divided half
into a training set and half into a test set. KISS-GP regres-
sion was compared to CSK-SKI regression by its regression
accuracy. Indeed, CSK-SKI and KISS-GP achieved near
zero error. However, the running time for KISS-GP, which
ran in 0.09 seconds, was faster than CSK-SKI, which ran in
0.22 seconds. To test CSK-SKI in higher dimensions with
CSKs constructed as Kronecker products, we also experi-
mented with a more difficult synthetic two-dimensional re-
gression task. For this task, x values were drawn randomly
from an isotropic truncated normal distribution between 0
and 1, and y values were determined by the polynomial

y(x) = x? + 4z 0.

The base kernel was chosen an RBF kernel with length
scale 3. The number data points and inducing points were
n = 100 and m = 10000 respectively. The CSK was cho-
sen to be a Wendland kernel, which has been shown to per-
form well for RBF base kernels, and the bandwidth was
b = 10, determined by guessing a reasonable length scale
for the CSK in interpolating the RBF kernel. CSK-SKI
and KISS-GP achieved nearly identical accuracy, achiev-
ing 0.000348 and 0.000347 mean squared error in 74.3 and
162 ms respectively.

4.4. Real-World Data Set

We tested our model on several noisy real world datasets,
including CO2 concentrations measured in Mauna Loa
(Hipel & McLeod, 2014). The hyperparameters were tuned

Kernel Interpolation Error vs. Computation Time
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Figure 6. RBF * Truncated Power CSK SKI performance versus
time compared to KISS-GP.

manually to 1000 inducing points and a base length scale
of 6.5. The CSK-SKI was set to a very small bandwidth of
3. CSK-SKI and KISS-GP achieved similar mean squared
error of 8.94 and 8.39 respectively, and inference times of
0.095 and 0.052 seconds. This shows our method is com-
petitive with KISS-GP on real world noisy data. Hyper-
parameter learning would be helpful in achieving greater
accuracy.

4.5. CSK-GP Interpolants with Non-zero Means

As described in 3.3, we benchmarked the performance in
accuracy and time of a CSK-based GP interpolant using the
predictions of a simpler regression function instead of 0 as
its mean. Unfortunately, the resulting approximations were
not accurate. Approximations for a variety of base kernels
were examined, including the RBF, OU, and Matern ker-
nels (Figures 8, 20, 21 respectively). This result was un-
expected, and may suggest that the Wendland CSK used is
not appropriate for GP regression of the residual function.
We suggest this result as an interesting area for further ex-
amination.

4.6. Learning CSK Hyperparameters

To demonstrate the CSK learning procedure, we took the
base kernel to be an OU kernel with length scale equal to
10. We generated a small number of inducing points (10)
so that the interpolation would be more illustrative. We im-
plemented CSKs in GPyTorch without sparse operations,
which is tractable because of the small number of induc-
ing points. We tested four interpolating kernels in this task.
The first three were all Wendland kernels with ¢ = 2 and
s = 1. The fourth was the product of the same Wend-
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Figure 7. Comparison of KISS-GP and CSK-SKI on learning the
sinc function with 1000 training points. Both methods achieved
negligible error but CSK-SKI took 0.22 seconds while KISS-GP
took 0.09 seconds.

CSK Length Scale | MAE

Unoptim. Wendland 10.0 .00516
Optim. Wendland 119.1 .00081
Optim. Wendland With Prior 76.6 .00084
Wendland x Spectral Mixture 29 1787

Table 1. CSK hyperparameter learning experiment results.

land kernel and an SM kernel with four mixtures. Each of
the four kernels was initialized with bandwidth equal to 10.
The first pure Wendland kernel was not optimized, to serve
as a baseline. The second Wendland kernel was optimized
without a prior. The third Wendland kernel was optimized
with a Gaussian prior with mean 1 and variance 1 over the
log length scale. The fourth kernel was also optimized with
no prior. The learned lengths scales and resultant inter-
polation error for these models are shown in table 1. As
expected, the optimized CSK was able to achieve signifi-
cantly lower interpolation error, but its length scale became
very large. The optimized CSK with a penalty for high
length scale achieved similar accuracy but learned smaller
a smaller length scale, and therefore will be more tractable.
Finally, the product kernel performed very poorly. We hy-
pothesize that the inaccuracy is due to poor spectral mixture
initialization rather than lack of merit.

5. Discussion

Our experiments upheld our initial belief that CSKs
could be used to perform accurate kernel interpolation
while maintaining tractability. We have have described a
method for computing fast matrix-vector multiplications
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Figure 8. Mauna Loa CO2 concentrations.
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Figure 9. Runtime vs. Accuracy for Nonzero Mean CSK-SKI

with CSK-SKI and demonstrated its quasi-linear scaling
with the number of inducing points. We have shown that
in many cases one can achieve higher kernel interpolation
accuracy per unit time using CSK-SKI than KISS-GP. We
have also found that, in general, Wendland CSKs are much
better interpolants than those constructed with the trun-
cated power function. We have also shown that it is pos-
sible to automatically learn interpolating kernel hyperpa-
rameters with constraints on its tractability.

However, there exist a number of limitations to our pro-
posed method: firstly, for a number of base kernels, namely
the OU and Spectral Mixture kernels, our interpolation
method is only competitive with local cubic interpolation
in terms of accuracy, while also being more expensive. Ad-
ditionally, even for base kernels for which CSK-SKI does
significantly outperform KISS-GP in accuracy (while be-
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ing more expensive), at least in our learning scenarios, the
more accurate approximation produced by CSK-SKI does
not seem to significantly affect the accuracy of the predic-
tions made over those made with KISS-GP. In fact, our re-
sults suggest that KISS-GP produces a sufficiently accurate
kernel approximation for practical use in a variety of sce-
narios.

Nevertheless, we believe that CSK-SKI is a useful scalable
GP method and that future may continue to show its ben-
efits over of KISS-GP. Specifically, future implementation
within GPyTorch will be critical for evaluating CSK-SKI in
the context of kernel learning and difficult regression prob-
lems. Integration with GPyTorch will also enable CSK hy-
perparameters to be learned simultaneously with the base
kernel itself. Additionally, we had attempted to automati-
cally learn new compactly supported kernels by composi-
tion with the spectral mixture kernel. Since the experiment
seems to have only failed due to poor spectral kernel initial-
ization, we are interested in its continued study. Addition-
ally, exploration of exactly why our framework for CSK-
based GP interpolation with a regression function as the
prior mean did not work in our experiments could inform
even further improvements to the accuracy of CSK-SKI,
helping to make it a more desirable alternative to KISS-GP.
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Appendices

A. Run-ime at higher dimensions

To see how our CSK-SKI method scales with respect to
dimensions, we created synthetic datasets of increasing di-
mensions. The data is randomly generated values between
0 and 10, and label is the sum of the values of every di-
mension. Keeping all other parameters constant, we mea-
sured the run-time at inference for different dimensionali-
ties. CSK-SKI scaled exponentially over KISS-GP in run-
time, while maintaining similar accuracy.

—— CSK-SKI Time
74 —— KISS-GP Time

time (s)

dimension

Figure 10. Running time of CSK-SKI vs KISS-GP for higher di-
mensional data.

B. Noisy synthetic data

We can achieve better accuracy for small and noisy
datasets. 200 random data points were generated with ran-
dom Gaussian noise sampled with a variance of 0.001. 25
inducing points were used, along with a CSK bandwidth of
3. CSK-SKI had a mean squared error of 0.0011 in 0.012
seconds. KISS-GP achieved worse accuracy in less time
with a mean squared error of 0.011 in 0.0060 seconds.
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C. Compactly Supported Kernel Plots
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Figure 16. Samples from a GP with Wendland covariance kernel
as the smoothness parameter q is varied.
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Figure 17. Samples from a GP with Truncated Power Function
covariance kernel as the smoothness parameter q is varied.
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Figure 18. Samples from a GP with Wu covariance kernel as the
smoothness parameter g is varied.

Euclid's Hat, q=1 Euclid's Hat, q=2

-1 4

0
-2 4 _1
- E o 100 00 _2 % 75 100
Eucslid‘s 5ﬁat. q=3 ) Eucslid‘s ﬂat. q=4
1 1
0 0

-2

5 s 75 100 0 25 5 75 100

o

Figure 19. Samples from a GP with Euclid’s Hat covariance ker-
nel as the smoothness parameter q is varied.



Accurate Kernel Interpolation with Compactly Supported Kernels

D. Supplementary Run-time vs. Interpolation
Accuracy Plots
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Figure 21. Runtime vs. Accuracy for Nonzero Mean CSK-SKI
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PER Kernel Interpolation Error vs. Computation Time
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6x1073

4x1073

3x1073

Mean absolute error

2x1073

—— Wendland,b=300,q=2
—— Wendland,b=75,q=3
—e— Wendland,b=30,q=1
—e— KISS-GP

Figure 27. Error vs. Computation time for Spectral Mixture Base

Kernel

—

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Computation time (seconds)

comb Kernel Interpolation Error vs. Computation Time

1073

1074 1

1075 4

1076 4

1077

1078 4

Mean absolute error

1079 4

10-10 4

—s— Wendland,b=300,q=2
—— Wendland,b=75,q=2
—— Wendland,b=30,q=3
—e— KISS-GP

10-11

Figure 28. Error vs. Computation time for Combination 1 Base

0.0

0.5 1.0 15 2.0 2.5 3.0
Computation time (seconds)

Kernel
comb?2 Kernel Interpolation Error vs. Computation Time
—— Wendland,b=300,q=2
—+— Wendland,b=75,q=2
—— Wendland,b=30,q=3
1073 —— KISS-GP
-
2
@
o 107 4
2
5
)
2
Q
o
c
3 1077
=
1076 4
0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 29. Error vs. Computation time for Combination 2 Base

Kernel

Computation time (seconds)

comb3 Kernel Interpolation Error vs. Computation Time

1072 4

10-3 4

1074 1

1075 4

1076 4

107 4

Mean absolute error

1078 4

10-9 4

10-10 4

—— Wendland,b=300,q=2
—«— Wendland,b=75,q=2
—— Wendland,b=30,q=3
—e— KISS-GP

Figure 30. Error vs.

Kernel

0.0

0.5 1.0 15 2.0 2.5 3.0
Computation time (seconds)

Computation time for Combination 3 Base



