
Seizure Detection
Rohit Bandaru

Cornell University
Ithaca, NY

rb696@cornell.edu

Aasta Gandhi
Cornell University

Ithaca, NY
apg67@cornell.edu

Abstract—Seizure detection using electroencephalography is an

important problem in treating epilepsy. We present a machine

learning approach to epileptic seizure detection. Through analysis

of a EEG data, we can classify one second clips as ictal or

non-ictal. This approach can be applied in a patient specific

setting, given sufficient training data for each patient. Our

models are quick to train and deploy, without requiring expensive

computational resources. We used time series data, and wavelet

transform coefficients with dimensionality reduction on support

vector machine and random forest machine learning models.

We were able to achieve over 80% area under ROC curve

performance.

Index Terms—seizure detection, machine learning, eeg

I. INTRODUCTION

Epileptic seizures affect approximately 1% of the population
[1]. They occur due to abnormal neuronal firings caused by
involuntary alterations in activities such as movement and
behavior [2]. Drugs have proven to be ineffective for 20% to
40% individuals with epilepsy, and patients continue to suffer
seizures and adverse side effects post-surgery [3].

In such cases, seizure detection systems can be useful in
detecting, monitoring and responding to seizure activity in real
time. And, detection in responsive neurostimulation devices
is often done with classification techniques using machine
learning on electroencephalography (EEG) data collected in
real time [4]. Generalized classification in software [5] [6] and
hardware [7] have shown high sensitivity and accuracy rates,
but tend to lose information on variability between patients
[2].

Consequently, to capture differences in patients we de-
veloped a patient specific model to detect ictal (seizure)
and non-ictal (non-seizure) events in seven distinct patients
through various binary classification techniques. Data was
pre-processed, channels were selected and used for feature
extraction. Classifiers used included support vector machines,
bagging and random forests. An overview of our methodology
is provided in Figure 1.

II. PREPROCESSING

A. Dataset
The EEG data we used had seven patients, each with

hundreds or thousands of labeled ictal and non-ictal EEG data.
Some patients had data with 5000 Hz sampling frequency,
others with 500 Hz sampling frequency. The number of
channels also varied between patients. This variance in data
between patients, and the fundamental differences in epilepsy

Fig. 1. Overview of methods.

Patient 1 2 3 4 5 6 7

Channels 96 56 16 88 47 88 96

Fs 5000 500 500 500 5000 500 500

Ictal 218 191 296 424 180 313 307

Non-Ictal 600 900 900 1200 1800 2100 2400

Test 932 1243 2401 2185 3058 4117 4524

TABLE I
OVERVIEW OF PATIENT INFORMATION.

between patients made a universal trained classifier infeasible.
We extracted features and trained a machine learning model
independently for each patient.

The EEG data was too high dimensional to train a machine
learning classifier effectively. Therefore, we had to pre-process
and extract specific features to obtain specific information to
use in classification.

B. Channel Selection

Looking at the EEG data, it became clear that only a few
channels have useful information for seizure detection. Rather
than extracting features from all channels, we found it more
efficient and effective to select a few of the more useful
channels for analysis. Additionally, this decreased computation
time of the model.

We chose to select the channels with the highest variance.
The intuition behind this was that channels with more variance
have more information than a channel that is relatively flat.

Channel selection was done by randomly sampling 200
ictal and non-ictal points, finding the n channels with highest
variance, and then taking the n channels that appear most often
in the selected data points.

III. FEATURE EXTRACTION

A. Frequency Domain
For the frequency domain, we chose to apply the Discrete

Wavelet Transform (DWT) to the selected channels because
DWT provides optimal time-frequency resolution across a
large frequency range and is now frequently used in seizure de-
tection classification [8]. A wavelet is an oscillation localized
in frequency and time that vanishes quickly. Discrete wavelets
are formed by discretizing the scale (a) and translation (b)
parameters of the continuous wavelet:

 a,b(t) =
1p
|a|
 (

t� b

a
), a, b 2 < (1)

The parameters are commonly based on powers of two
where a = 2j and b = k2j where j, k 2 Z. The full form
of DWT can be written as:

dj,k =

Z 1

�1
s(t)2�j/2 (2�jt� k)dt (2)

dj,k =
⌦
s(t), j,k(t)

↵
(3)

Here, dj,k are the wavelet coefficients which will be used
to form our feature vectors. j corresponds to the level of the
wavelet, and k corresponds to the location. When processing
with DWT, different ”mother wavelets” produce different
coefficients. The Daubechie family was what we used in this
model because it was the most common and relevant feature in
literature for seizure detection [2] [8]. The decomposition level
of the DWT corresponds to specific frequency bands where
greater levels provide greater signal resolution. Frequently, the
range of levels used is 2-5, and We chose a decomposition
level of 5 whose frequency range corresponds to 1.25-16 Hz
and corresponds to theta, delta, alpha and beta brain waves.

We also generated the absolute value, standard deviation,
energy and variance from the DWT coefficients [8], but found
that these features did not make a difference on performance.
To avoid overfitting on features, we chose to just use the
coeffcients themselves.

B. Time Domain
For the time domain, we chose a few features which were

shown to have a sensitivity of higher than 80% in a study
that evaluated discriminative performance of 65 previously
reported, distinct features [9]. This study evaluated sensitivity,
specificity and area under the sensitivity-specificity curve
which we wanted to maximize. We initially chose 9 out of the
15 optimal time domain features from the study including line
length, energy/power, maximum, minimum, mean, variance,

skew, kurtosis and entropy. However, we narrowed down to 6
features (described below) that produced the higher accuracy
on our model.

1) Line Length: Line length was defined as the sum of the
distances between a point and its previous point:

ll =
ndatapointsX

n=1

|xnxn�1| (4)

2) Energy: Energy was defined as the sum of the square of
each time point:

en =
ndatapointsX

n=1

x2
n (5)

3) Variance: Variance describes how far a set of points are
spread out from their mean. It is defined as:

va = E[(X � µ)2] (6)

4) Skew: We used the skew function in the SciPy Statistics
library. Skewness describes how symmetrical the distribution
is. Skewness is defined as:

sk = E[(X � µ

�
)3] (7)

5) Kurtosis: We used the kurtosis function in the SciPy
Statistics library. Kurtosis describes the peakedness or flatness,
and measures the probability in the tails of the distribution.
When this was added as a feature, we noticed the accuracy
of our model improved suggesting significant peak or tail
differences between ictal and non-ictal events. Kurtosis is
defined as:

ku = E[(X � µ

�
)4] (8)

6) Power: To calculate power, we used Welchs method
which estimates the power spectral density by dividing the
data into overlapping segments using the welch function with
default parameters in SciPys Signal library. Then, we identified
frequency bands where we thought we might see peaks (12-
30 Hz or 100-600 Hz ranges), and calculated total power for
those corresponding frequencies.

IV. MACHINE LEARNING

A. Dimensionality Reduction
We applied dimensionality reduction in the form of prin-

cipal component analysis (PCA). We used the Scikit-Learn
implementation. This dimensionality reduction was applied
to the wavelet coefficients. Each channel yielded about five
hundred coefficients. For multiple channels this yields very
high dimensional data. Using data of this high dimension in
a classifier would result in over-fitting. PCA would lower the
dimension, normalize the data, and reduce the noise [10].

We applied PCA to the wavelet coefficients and concate-
nated them with the time series feature vector. The number of
components in the PCA is a hyper-parameter to tune. We found
that we were able to get high performance with a low number
of components (5). This shows that the wavelet coefficients
lie in a small subspace.

B. Support Vector Machines
The first classifier we used with strong performance was

Support Vector Machines (SVM) with a RBF kernel. We
chose this model because SVMs perform well on datasets with
imbalanced class labels.

This requires tuning gamma and C as hyper-parameters.
Through validation we found hyper-parameter values that are
most effective for each patient.

C. Ensemble Methods
1) Bootstrap Aggregation: Bootstrap Aggregation, or bag-

ging is used to create multiple models from a single training
set. A random number of sub-samples from the training set are
created with replacement, and then each sub-sample is trained
on a pre-defined weak classifier (e.g decision trees). Then, the
average prediction from each trained model is calculated. We
initially chose this method because a lot of variance exists
within specific channels of patients, and bagging handles this
by training on high variance algorithms on training data that
is constantly changing.

We created our model using the BaggingClassifier in the
SciKit Learn library. The base estimator used was the decision
tree because it is a weak classifier with high variance. We
calculated the number of estimators to use for each patient
by looping over a range of 10 to 150, and found that for all
patients, the highest accuracy was obtained at 10 estimators.
For patients with a larger dataset size (i.e patients 5-7), 30
estimators also produced over 97% training accuracy. The
model was also bootstrapped so that samples were always
drawn with replacement.

2) Random Forests: Random Forests are used on larger
datasets and are an improvement to bagging because ran-
dom forests decrease correlation between subtrees. Essentially,
when decision trees are being split, the algorithm looks at all
possible variables to find an optimal split.

We created our model using the RandomForestClassifier in
the SciKit Learn library. The base estimator was a decision
tree with a maximum depth of 3, minimum number of samples
required to split was 2 and the maximum number of features
used for each tree was 20. The number of estimators for all
patients was 30.

For this classifier, we also weighted our samples since all
patients had a greater number of non-ictal to ictal events. We
determined weights by calculating the ratio of ictal to non-ictal
events, and assigning the greater weight to the ictal events. We
found that most of the patients had approximately 1 ictal event
for every 3 non-ictal events (25% of data was ictal), and for
patients with larger datasets (patients 6-7), the ratio was even
smaller. In the latter case, we default assigned weights of 0.75
for ictal and 0.25 for non-ictal as this gave the highest training
and validation accuracy.

D. Scoring
We used the area under (AUC) the ROC (receiver operating

characteristic curve) curve as the metric to evaluate our
models. The data is highly imbalanced, with far more negative

Model Freq.

Domain

Features

Time

Domain

Features

Parameters Score

SVM DWT Coeff.
w/ PCA

line length,
energy,
power,
variance,
skew,
kurtosis

C = 100,
gamma = 1

0.834

Random

Forest

DWT Coeff.
w/ PCA

line length,
energy,
power,
variance,
skew,
kurtosis

200
Decision
Trees,
depth of
2, 20 max
features

0.849

TABLE II
BEST PERFORMING MODELS.

points than positive. This makes classification accuracy highly
flawed. The ROC AUC score is a better metric for our purpose.

E. Validation

The machine algorithms we used had tunable parameters
that affect performance. Random forest is quite resilient to
different hyper-parameter settings, but careful tuning is crucial
for SVMs.

We used two methods of validation. We began by splitting
the training data into train and validation sets, with 80% being
in training. After training, the model was evaluated and scored
on the validation set. We used the telescopic search method
in order to find the hyper-parameters that would maximize
validation performance. However, we refrained from being too
specific in this tuning to avoid over-fitting on the validation
set.

We also used K-fold cross validation (k=10) using the SciKit
Learn library. This method is slower, but a stronger validation
scheme that mitigates over-fitting.

V. RESULTS

Our final two models were the Support Vector Machine and
Random Forests models which achieved over 80% ROC AUC
on Kaggle.

Random forests with 200 decision tree estimators of depth 2,
and a maximum features of 20 was one of the best performing
models with an ROC AUC of 0.849. The feature vectors used
were DWT coefficients reduced with PCA to 250 components,
and the 6 time domain features described in the methods.
Overall, other variations of estimators and features resulted
in an average ROC AUC of approximately 0.75 (Table II).

We used SVMs with the same feature vectors and were able
to get similar performance on the test set. The best performing
model had a score of 0.835 (Table II).

Bagging models were also attempted, but the average kaggle
score was consistently less than 0.75 so we chose not to tune
the model further, and switched to random forests.

Fig. 2. ROC curves for patients 2, 3 and 5 trained on SVM model.

Fig. 3. ROC curves for all patients trained on random forests model.

VI. DISCUSSION AND CONCLUSIONS

We found that effective seizure detection can be accom-
plished with a small number of features. Although there may
be dozens of EEG channels, only 3-5 need to be used. Given
the channels, a small number of features can be used. Although
we used many time domain and frequency domain features,
decent classification performance can be accomplished with
fewer.

For each model, we also generated ROC AUC curves,
and evaluated the precision and recall for each patient. We
looked at recall because the ROC curve plots the true positive
rate (recall) against the false positive rate, and we looked at
precision to determine how relevant all the data really was. As
we tried to maximize precision, we saw that recall decreased
since they are proportional.

For the SVM model, both precision and recall were above
0.9 for all the patients for ictal events. But, as the number
of patient data points increased (patients 6, 7), we see that
precision decreased for non-ictal events. A likely explanation
for this is that we did not use any weighting on our data

so the model was able to capture irrelevant non-ictal events.
This could cause the non-ictal precision to decrease and the
recall to increase. Overall, we saw that as the number of data
increased and the amount of ictal events decreased, the AUC
score patient wise also decreased (Figure 2).

The AUC curves for the Random Forests model showed
similar trends. However, the validation ROC and accuracy
scores were consistently over 0.95. For patients such as 3, 4, 6
and 7, we see that the precision for ictal events was lower. This
suggests that the recall would be higher and thus, the ROC
AUC should also be greater in comparison to the SVM which
is observed (Figure 3). Both quantitatively and qualitatively,
the random forests model performed slightly better, and was
able to handle weighting and changing data size better as well.

Major limitations in our models to account for in the future
include the types and number of features, amount of data,
skewed data and channel selection. Additional features that
we could use include channel correlation matrix, and more
advanced time domain features such as entropy. To handle
the number of features, it would be necessary to test our
model on variations of different groups of features to see how
relevant each feature is. To handle skewed data, we would
need to look into more complex weighting techniques rather
than thresholding over the ratio of ictal to non-ictal events.

Additionally, we generalized our models for all the patients,
and tuned the overall model patient wise. Here, we could also
try designing unique models for each patient and be strictly
patient specific. However, our method also worked sufficiently
as we saw significant improvements patient wise between the
SVM and Random Forest models.

We could also try other machine learning techniques in-
cluding gradient boosting and finely tuned neural networks for
each patient. We could also try using more channels and more
expressive features such as processing over DWT coefficients
at the expense of computational efficiency.

Overall, we observed that both Random Forests and Support
Vector Machines are strong classifiers for skewed seizure
detection data, and we achieved over 80% accuracy on both
the models.

ACKNOWLEDGMENTS

We would like to thank Professor Mahsa Shoaran and
Hanchen Jin for their guidance on the project.

REFERENCES

[1] Leppik I. Contemporary diagnosis and management of the patient with
epilepsy. Newtown, PA: Handbooks in Health Care 2000.

[2] Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Gut-
tag J. Patient-specific seizure onset detection. Epilepsy & Behavior
2004;5:483-498.

[3] Jette N, Reid AY, Wiebe S. Surgical management of epilepsy. CMAJ:
Canadian Medical Association Journal. 2014;186(13):997-1004.

[4] Ramgopal S, Thome-Souza S, Jackson M, Kadish NE, Fernandex
IS, Klehm J, Bosl W, Reinsberger C, Schachter S, Loddenkemper T.
Seizure detection, seizure prediction, and closed-loop warning systems
in epilepsy 2014;37:291-307.

[5] Gotman J. Automatic recognition of epileptic seizures in the EEG.
Electroencephalogr Clin Neurophysiol 1982;54:53040.

[6] Webber WRS, Lesser RP, Richardson RT, Wilson K. An approach to
seizure detection using an artificial neural network. Electroencephalogr
Clin Neurophysiol 1996;98:25072.

[7] Raghunathan S, Gupta SK, Markandeya HS, Roy K, Irazoqui PP. A
hardware-algorithm co-design approach to optimize seizure detection al-
gorithms for implantable applications. Journal of Neuroscience Methods
2010; 193:106-117.

[8] Chen D, Wan S, Xiang J, Bao FS. A high-performance seizure detection
algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS
ONE 2017;12(3): e0173138.

[9] Logesparan L, Casson AJ, Rodriguez-Villegas E. Optimal features for
online seizure detection. Med Biol Eng Comput 2012;50:659-669.

[10] Subasi A, Gursoy MI. EEG signal classification using PCA, ICA,
LDA and support vector machines. Expert Systems with Applications
2010;37:8659-8666.

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 2/9

In []: import numpy as np
import pywt
from pywt import wavedec
import scipy.io as spio
from scipy import signal
import scipy.signal as sg
import scipy.stats as stats
'''

data: (t,c)

'''

def extract_feature(data):
 n_t, n_c = data.shape

 feature = []

 ll = line_length(data).flatten()

 en = energy(data).flatten()

 va = variance(data).flatten()

 po = power(data).flatten()

 ku = kurtosis(data).flatten()

 sk = skew(data).flatten()

 feature = np.append(feature, [ll,en,va,po,ku,sk])

 return feature

def extract_feature_coeff(data):
 n_t, n_c = data.shape

 feature = []

 for channel_number in range(n_c):
 coeffs = wavedec(data = data[:, channel_number], wavelet='db4',

mode = 'symmetric', level = 5)

 cA5, cD5, cD4, cD3, cD2, cD1 = coeffs

 for c in coeffs:
 feature = np.append(feature,c)

 return feature

not axis function

def abs_val_coeff(data):
 return np.mean(np.abs(data))

def stdev_coeff(data):
 return np.std(data)

def energy_coeff(data):
 #m, n = data.shape

 energy = np.sum(np.square(np.abs(data)))

 return energy

def variance_coeff(data):
 variance = np.sum(np.square(data - np.mean(data)))

 return variance

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 3/9

axis functions

def kurtosis(data):
 return stats.kurtosis(data, axis=0, bias=False)

def skew(data):
 return stats.skew(data, axis=0, bias=True)

def stdev(data):
 return np.std(data, axis = 0)

def line_length(data):
 # subtract previous data point from every point to get the line leng

th

 data[1:,:] = np.abs(data[1:,:] - data[0:-1,:])

 line_length = np.sum(data, axis = 0)

 return line_length

def energy(data):
 energy = np.sum(np.square(np.abs(data)), axis = 0)

 return energy

def variance(data):
 variance = np.sum(np.square(data - np.mean(data, axis = 0)), axis =

0)

 return variance

def power(data):
 m, n = data.shape

 power = np.zeros(n)

 for j in range(n):
 # f contains the frequencies that correspond to the powers in Px

x_den

 f, Pxx_den = signal.welch(data, m)

 # sum up the powers in the frequency bands

 band_f = np.where(np.logical_or(np.logical_and(f>=12, f<=30), np

.logical_and(f>=100, f<=600)))

 # add the power to the channel

 power[j] = np.sum(Pxx_den[band_f])

 return power

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 4/9

In []: import feature_extractor as fe
from os import listdir
import scipy.io as spio
import numpy as np

'''

data: (m,n)

'''

def directory_data(path, channels):
 files = listdir(path)

 print(str(len(files))+" number of points")

 data = None

 for i, file in enumerate(files):
 print(str(i+1)+"/"+str(len(files))+": extracting "+file)

 file_data = spio.loadmat(path+file)["data"]

 vec = fe.extract_feature(file_data[:,channels])

 if data is None:
 data = np.zeros((len(files),vec.shape[0]))

 data[i,:] = vec

 print("directory data shape", data.shape)

 return data

def get_data(patient_number, channels):
 ictal_train = directory_data("data/patient_"+str(patient_number)+"/i

ctal train/", channels)

 non_ictal_train = directory_data("data/patient_"+str(patient_number)

+"/non-ictal train/", channels)

 m_ictal = ictal_train.shape[0]

 m_non_ictal = non_ictal_train.shape[0]

 data = data = np.vstack([ictal_train, non_ictal_train])

 labels = np.hstack([np.ones((m_ictal)),np.zeros((m_non_ictal))])

 for i in range(int(m_non_ictal/m_ictal) -1):
 data = np.vstack([ictal_train, data])

 labels = np.hstack([np.ones((m_ictal)),labels])

 return data, labels

def directory_data_coeff(path, channels):
 files = listdir(path)

 print(str(len(files))+" number of points")

 data = None

 for i, file in enumerate(files):
 print(str(i+1)+"/"+str(len(files))+": extracting "+file)

 file_data = spio.loadmat(path+file)["data"]

 vec = fe.extract_feature_coeff(file_data[:,channels])

 if data is None:
 data = np.zeros((len(files),vec.shape[0]))

 data[i,:] = vec

 print("directory data shape", data.shape)

 return data

def get_data_coeff(patient_number, channels):
 #dir_name = "C:/Users/Aasta/Documents/CU SP 18/ECE 5040/"

 ictal_train = directory_data_coeff("data/patient_"+str(patient_numbe

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 5/9

r)+"/ictal train/", channels)

 non_ictal_train = directory_data_coeff("data/patient_"+str(patient_n

umber)+"/non-ictal train/", channels)

 m_ictal = ictal_train.shape[0]

 m_non_ictal = non_ictal_train.shape[0]

 data = np.vstack([ictal_train, non_ictal_train])

 labels = np.hstack([np.ones((m_ictal)),np.zeros((m_non_ictal))])

 for i in range(int(m_non_ictal/m_ictal) -1):
 data = np.vstack([ictal_train, data])

 labels = np.hstack([np.ones((m_ictal)),labels])

 return data, labels

sample datapoints to get the most useful channels for a particular pat

ient

def directory_data_sample(path, channels_num, sample):
 import random
 files = listdir(path)

 random.shuffle(files)

 data = None

 for i, file in enumerate(files):
 if(i>sample):
 break
 file_data = spio.loadmat(path+file)["data"]

 vec = np.argsort(-np.var(file_data, axis=0))[0:channels_num]

 if data is None:
 data = np.zeros((len(files),vec.shape[0]))

 data[i,:] = vec

 return data

def get_channels(patient_number, channels_num, sample):
 ictal_train = directory_data_sample("data/patient_"+str(patient_numb

er)+"/ictal train/", channels_num, sample)

 non_ictal_train = directory_data_sample("data/patient_"+str(patient_

number)+"/non-ictal train/", channels_num, sample)

 data = np.vstack([ictal_train, non_ictal_train])

 return np.argsort(np.bincount(data.astype(int).flatten()))[-channels
_num:]

split data set and labels randomly on the split, which is the proporti

on of points that will go in the training set

def train_val_split(data,labels,split):
 # shuffle data

 rand_idx = np.random.permutation(labels.shape[0])

 labels = labels[rand_idx]

 data = data[rand_idx,:]

 m = data.shape[0]

 train_m = int(m*split)

 val_m = m - train_m

 train_data = data[:train_m,:]

 train_labels = labels[:train_m]

 val_data = data[train_m:,:]

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 6/9

 val_labels = labels[train_m:]

 return train_data, train_labels, val_data, val_labels

In []: import feature_extractor as fe
from os import listdir
import scipy.io as spio
import numpy as np
import dataset

In []: patient_number = 2

channels = dataset.get_channels(patient_number, 30, 200)

print(channels)

data, labels = dataset.get_data(patient_number, channels)

datac, labelsc = dataset.get_data_coeff(patient_number, channels)

print(data.shape)

print(datac.shape)

In []: print(data.shape)

print(labels.shape)

data = np.nan_to_num(data)

std = np.std(data, axis=0)

mean = np.mean(data, axis=0)

#max1 = np.max(data, axis=0)

#data2 = data/max1

data2 = np.nan_to_num((data-mean)/std)

perform PCA on frequency coefficients

from sklearn.decomposition import FastICA
from sklearn.decomposition import PCA
pca = PCA(n_components=250, whiten = True)
pca.fit(datac)

data2c = pca.transform(datac)

concatenate time domain and frequency domain data

new_data = np.hstack([data, data2c])

train_data, train_labels, val_data, val_labels = dataset.train_val_split

(np.nan_to_num(new_data.astype(np.float64)), labels, .75)

print(train_data.shape)

print(train_labels.shape)

print(val_data.shape)

print(val_labels.shape)

'''

import matplotlib.pyplot as pyplot

plt.scatter(data[:,0],data[:,1],c=labels)

plt.title("2 component PCA")

plt.show()

'''

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 7/9

In []: from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold
from sklearn import metrics

SVM

#clf = SVC(C=100, gamma=1, kernel='rbf',

 #max_iter=10000000, probability=True)

clf = RandomForestClassifier(n_estimators=200, max_depth=2, max_features

=20)

clf.fit(train_data, train_labels)

print("training")

print(metrics.classification_report(train_labels,clf.predict(train_data

)))

print(metrics.roc_auc_score(train_labels, clf.predict_proba(train_data)

[:,1]))

print("\nvalidation")
print(metrics.classification_report(val_labels,clf.predict(val_data)))

print(metrics.roc_auc_score(val_labels,clf.predict_proba(val_data)[:,1

]))

print(metrics.accuracy_score(val_labels,clf.predict(val_data)))

print("\n")

fpr, tpr, thresholds = metrics.roc_curve(val_labels, clf.predict_proba(v

al_data)[:,1], pos_label=1)

import matplotlib.pyplot as plt
plt.plot(fpr,tpr)

#print(clf.feature_importances_[:48])

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 8/9

In []: path = "data/patient_"+str(patient_number)+"/test/"

files = listdir(path)

print(str(len(files))+" number of points")

import os
import csv
csv_path = 'patient_roc' + str(patient_number)+'.csv'

f = open(csv_path, "w")

f.truncate()

f.close()

with open(csv_path, 'a') as csvfile:
 spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoti

ng=csv.QUOTE_MINIMAL)

 for i, file in enumerate(files):
 # weird MACOS file to ignore

 if file == ".DS_Store":
 continue
 print(str(i+1)+"/"+str(len(files))+": extracting "+file)

 file_data = spio.loadmat(path+file)["data"]

 vec = np.nan_to_num(fe.extract_feature2(file_data[:,channels]))

 vec = np.nan_to_num((vec-mean)/std)

 vec2 = np.nan_to_num(fe.extract_feature_coeff(file_data[:,channe

ls]))

 vec2 = np.nan_to_num(pca.transform(vec2.reshape(1,vec2.shape[0

])).astype(np.float32))

 vec = np.append(vec,vec2)

 vec = vec.reshape(1,vec.shape[0])

 filename = file[:-4].replace("test_", "")

 score = clf.predict_proba(vec).reshape(-1, 1).T[0,1]

 pred = [filename, score]

 print(pred)

 spamwriter.writerow(pred)

5/17/2018 full code

http://localhost:8888/nbconvert/html/full%20code.ipynb?download=false 9/9

In []: ###concatenate all files

import pandas as pd
files = ["patient_roc1.csv","patient_roc2.csv","patient_roc3.csv",

 "patient_roc4.csv","patient_roc5.csv","patient_roc6.csv","patie

nt_roc7.csv"]

out = open("patient.csv", "w")

out.truncate()

out.close()

with open("patient.csv", 'a') as csvfile:
 writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=c

sv.QUOTE_MINIMAL)

 writer.writerow(["id","prediction"])

 for file in files:
 with open(file, 'r') as csvfile:
 reader = csv.reader(csvfile, delimiter=',', quotechar='|')

 for row in reader:
 writer.writerow(row)

