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Abstract

Neural networks are flexible and powerful models
that can excel in many learning tasks. However,
the size of the hidden layers is difficult to opti-
mize causing under or over parameterization. A
common approach to learning this complexity is
initially training an overly large network and prun-
ing parts of it for efficient inference. However,
this method is computationally inefficient in train-
ing and susceptible to under-parameterization. To
address these limitations, we introduce dynamic
neuron creation and deletion, in which neurons of
a model are dynamically pruned or added while
maintaining accuracy close to a baseline. We first
prune based on various activation statistics of neu-
rons such as variance and correlation. We also
propose methods to ”add” neurons by duplicating
neurons based on these same statistics, but have
not achieved experimental results. We compare
different pruning methods on benchmark image
classification datasets such as MNIST and CIFAR-
10 and demonstrate that efficient fully connected
and CNN architectures can be learned with a poor
choice of initial model complexity.

1. Introduction

Deep learning has achieved incredible performance on many
tasks in a variety of domains. However, most of these deep
neural networks are computationally expensive. They can
require hours or days on GPUs to train and occupy signifi-
cant memory space. They can also be slow in inference and
cause excessive energy consumption. More efficient neural
networks would allow for more powerful applications and
make this technology more accessible.

The architecture of a neural network must be carefully de-
signed to succeed in its task. The number of layers and
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neurons or filters in each layer must be set before train-
ing. A model of low complexity would be computationally
inexpensive, but can fail to capture the complexity of the
data and achieve desired performance. A model of high
complexity can be high performing, but computationally
expensive.

The architecture of neural networks is often fixed manually,
requiring trial and error to find the right setting. Even then, it
is unlikely that a human can achieve the best setting through
vague intuitions. Methods to learn this complexity can help
find more efficient neural network architectures.

Current research focuses on taking large effective networks
and making them more computationally efficient for in-
ference. One approach to achieve this is pruning, which
selectively removes some parts of the network. Pruning can
be done on weights, or directly on neurons of a network.
Pruning on weights involves removing weights that are not
being used and results in sparse matrices. The problem
with this method is that certain degree of matrix sparsity is
necessary to observe computational gains, and also many
hardware platforms do not support sparse matrix computa-
tion well. It is more efficient to have dense matrices, but of
smaller sizes, which can be achieved by pruning on neurons
(Hu et al., 2018). However, pruning the neurons themselves
is not as popular because it tends to have a larger effect on
the performance of the network.

However, we also want to be able to take under-parametrized
networks, and automatically make them more complex to
achieve better performance. One approach is adding neurons
to layers of neural networks by evaluating the statistics
and interactions between different neurons. By adding or
replicating neurons at points of high activity, features can
be separated and classified with greater resolution.

2. Related Work

Early work in this area focused primarily on compression
by weight based pruning to reduce network complexity,
while maintaining training error. Optimal Brain Damage
(OBD) (LeCun et al., 1990) is a technique which predicts
and prunes on low saliency weight parameters using the
Hessian of the loss function. OBD demonstrated both speed
up and a four times size reduction in a sparsely connected
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network.

In denser, less constrained networks, weights can be pruned
using thresholding methods. (Han et al., 2015b;a) demon-
strated thresholding low-weight connections in Convolu-
tional Neural Networks (CNNs) using iterative pruning,
which retrains the pruned network to learn the weights of
the new, sparse network. However, thresholding on small-
magnitude weights primarily compresses fully connected
layers. Convolutional layers can be better compressed by
iteratively removing filters with low L1-norm of weights (Li
et al., 2016). Magnitude-based pruning has effectively re-
duced model complexity without loss of accuracy, but does
not necessarily reduce redundancy within layers. Pruning
neurons based on weights has been explored.

There are also methods to encourage training of networks
to be more prunable. A common approach demonstrated by
(Han et al., 2015b) is to add L1 regularization to the weights,
to encourage training a sparse network. (Babaeizadeh et al.,
2016) encourages correlations between neurons by dupli-
cating the target vector with noise. (Alvarez & Salzmann,
2017) introduces a loss term to encourage low rank weight
matrices, which can be compressed more strongly.

A scarce area of research has been increasing the density
of neural networks by adding neurons. Adding neurons is
explored in the field of lifelong learning in which a network
is given more tasks over time in an online setting. More
tasks can require increasing neural network capacity. (Lee
et al., 2017) propose a Dynamically Expandable Network
(DEN) where the network expands by adding neurons and
selectively retraining new neurons and old neurons that are
not well utilized. However, expandable neural networks
have not been applied on offline learning problems with
fixed tasks. These expandable neural network methods can
be used to efficiently find an effective neural network archi-
tecture.

3. Metrics of Neurons

Neurons are characterized by their weight, bias and acti-
vations. The mean and variance of these parameters is
simplest method to understand the significance of each neu-
ron. As described above, pruning on complex statistics, or
even simpler methods such as thresholding have been at-
tempted primarily on the weights of the neurons. However,
the fixed architecture and high dependency between neurons
and layers in fully-connected networks makes them more
susceptible to over parametrization. To better understand the
relation between neurons within layers themselves, we can
observe simple heuristics such as variance and correlation
between the activations of neurons.

Activations are the outputs of a neuron that are used as the
input of a neuron in the next layer. This activation describes

the "activity” of each neuron. We can observe the variance
between these activations and delete neurons with ’low ac-
tivity” or low variance. Similarly, the activity of neurons
in relation to other neurons can be measured via correla-
tion. Higher correlation can mean similar activity between
neurons, which can be combined into one neuron. These
metrics can describe how significant or “active” different
areas of a network are.

In convolutional neural networks, the activity of a neuron,
or kernel can be determined by measuring the average of
the correlation between convolved features. Then, to prune
kernels, we can take the correlation of each kernel activity
as described above.

In this paper, we describe two methods two pruning. We
first attempt magnitude-based pruning using the L.1 norm
on activations of each kernel. In each layer, we remove
the kernel with the least individual activity. Second, we
attempt to correlate the activity of neurons, or kernels them-
selves. By making this comparison, we can determine which
method reduces model complexity effectively, as well as the
inter-dependence of kernel activations.

4. Pruning Neurons

The goal of pruning neural networks is to remove as many
of the parameters while not hurting performance. This can
be formalized as such:

n;vi,n|w’| st. C(DIW')—-C(DIW)<B (1)

We want to minimize the cardinality of the weights or num-
ber of parameters with a bound on the difference in loss.
This bound is expressed in Algorithm 1 as a sacrifice in accu-
racy. We apply various metrics to determine which neurons
can be removed with minimal detriment to the performance.

5. Adding Neurons

Adding a neuron to a fully connected layer means incre-
menting the output dimension and adding another row to
the weight matrix. Adding to a convolutional layer means
adding an additional filter and incrementing the number of
output channels.

min|C(DW)| st W|-WI<B @

We want to increase the accuracy of the network with a
bound on the difference in cardinalities of the weights or
number of parameters added. Our goal in designing algo-
rithms to add neurons is to best minimize the loss of the
network while also having a tighter bound B, which would
result in more efficient architectures.
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The methods for pruning neurons have analogous adding
methods. We start by using variance. Neurons with high
variance activations are selected to be used to add additional
neurons. From this we can determine the number of neurons
to add and which neurons they are splitting from. These
new neurons are meant to take some responsibility from the
neurons they are splitting from. There are multiple methods
of initializing these new neurons. We can either initialize it
with random noise as done when training a neural network
from scratch. We also tried copying the weights from the
neurons they are splitting from and adding noise to both
instances.

Other pruning methods can be applied in the expanding
setting. We can take two neurons with very low activation
correlation, and add a third neuron with an average of the
weights. High L1 norm can also be used as a basis to split a
neuron.

6. Method

We apply pruning iteratively. The network is first trained to
achieve desired performance, and then neurons are pruned
based on the metrics described above. The network is then
fine-tuned to accommodate for the changes in structure.
This is repeated for a set number of iterations, or until there
are no neurons that can be pruned.

Algorithm 1 outlines our approach for pruning. We set
thresholds 7" on a logarithmic scale to prune the network
in an iteratively increasing aggression. This is because the
network is more sensitive to changes the more pruned it is.
The differences between thresholds or number of thresholds
is analogous to a learning rate, but in our case we can view
it as a pruning rate.

7. Results

We designed our method to be invariant to neural network
architecture by using the same pruning algorithm for all
experiments. We tested fully connected and convolutional
neural networks on a NVIDIA K80 run on Google Colabo-
ratory. For all experiments, we measured testing accuracy,
number of operations in terms of floating point operations
per second (FLOPS), wall clock time and the total number
of parameters for each model.

We chose FLOPS and number of parameters as our primary
metric because they are often used to understand complex-
ities in CNNs. Both measures can be statically computed
from model as they rely on the network’s dimensionality
and matrix operations alone. We used wall clock time to
measure how long inference takes for a set of testing data.

Overall, our results show that the number of parameters and
operations can be reduced. Our figures show the number of

Algorithm 1 Dynamic Neuron Removal
Input: Neural Network Model M, Sacrifice s
Initial Accuracy A;, M = Pretrain(M)
Thresholds T' = {¢;}
for: = 1ton; do

Pruned Model M’ = Prune(N,t;)
Number of Retraining Iterations n,; = 0
while True do
M’ = Retrain(M’), A" = accuracy(M’)
if A’ >= A; — s then
Accept pruned model M = M’
continue
end if
if Nyt = Npt—mae then
Return M
else
Nyt = Ny + 1
end if
end while
end for
Return M

parameters and FLOPS plotted against the number of times
the model has been trained and pruned (“training iteration”).
Parameters (orange) are marked with the corresponding
threshold used for pruning as well as the corresponding
accuracy at that threshold (blue). The un-pruned model has
a threshold of 0.

7.1. Datasets

The MNIST dataset contains 62000 28 x 28, black and white
handwritten digits from 0 to 9.

The CIFAR-10 dataset contains 60000 32x32 mutually ex-
clusive, color images of animals and vehicles.

7.2. Fully Connected Network

A neural network with two convolutional layers with max
pooling, 5 linear layers with ReL.U activation were used.
Pruning was done with correlation methods on the first 4
linear layers. The network was trained on 3 epochs on the
MNIST dataset.

In this experiment, approximately 17% of the model param-
eters were pruned with a loss of accuracy of 1.9% (Figure
1) after the very first threshold (0.98).

7.3. Convolutional Neural Network

We designed a 4 layer CNN with a maximum with ReLU
activation, max pooling and batch normalization and a single
linear layer before the output. Pruning was done with the
minimum L1 and correlation methods on the first 3 layers of
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Figure 1. Pruning on highly correlated neurons in fully-connected
network on MNIST dataset.

the net. The network was trained on 3 epochs for MNIST.

When pruning on minimum L1 norms of kernels, approxi-
mately 25% of the model parameters were pruned and the
number of floating point operations reduced by 34% (Figure
2) with a loss of 1.1% accuracy over 3 iterations of training
on the MNIST dataset. The average wall clock time through
each iteration not including the baseline is 13.11 seconds.

When pruning correlations of kernels, approximately 29%
of the model parameters were pruned and the number of
floating point operations reduced by 71% (Figure 3) with
a loss of 1.3% accuracy over 10 thresholds (10 distinct
iterations). The average wall clock time for testing through
each iteration not including the baseline is 12.97 seconds.

Pruning on the correlation of kernel activity decreases the
number of operations 2 times more than using the minimum
L1 norm of each layer, suggesting that understanding the ac-
tivity within layers of a network can result in more effective
compression while maintaining accuracy. Though, the num-
ber of iterations for correlation is more than 3 times of the L1
method, pruning with correlations achieves finer granularity
and a lower loss of accuracy. Additionally, the average wall
clock time for each iteration of testing is approximately the
same indicating there is no significant difference in software
inference time. However, since the number of operations
and parameters decreases, hardware memory and resource
utilization would presumably decrease as well.

7.3.1. CIFAR-10

We also tested our pruning methods on a VGG-11 based
neural network on the CIFAR-10 image classification task.

When pruning on minimum L1 norms of kernels, approx-
imately 3.3% of the model parameters were pruned and
the number of floating point operations reduced by 6.6%
(Figure 5) with a gain in accuracy over 9 iterations of train-
ing. The average wall clock time through each iteration not
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Figure 2. Pruning on CNN kernels with minimum L1 norm on
MNIST dataset.
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Figure 3. Pruning on highly correlated CNN kernels on MNIST
dataset.
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Figure 4. Pruning on CNN kernels with minimum L1 norm on
CIFAR.
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Figure 5. Pruning on highly correlated CNN kernels on CIFAR.

including the baseline is 12.49 seconds.

When pruning correlations of kernels, approximately 0.2%
of the model parameters were pruned and the number of
floating point operations reduced by 4% (Figure 4) with a
gain in accuracy of 6.7% accuracy over 3 thresholds. The
average wall clock time for testing through each iteration
not including the baseline is 91.37 seconds.

The L1 norm method produced a significantly larger reduc-
tion in number of parameters over the correlation method
over a greater number of iterations than correlation. Because
the correlation process takes longer in terms of average wall
clock time and has larger computations, the improvements
observed take longer. However, the accuracy gain for corre-
lation was higher again suggesting that the inter-dependent
activity effects how effectively layers are pruned.

Additionally, the effect of pruning on the .1 norm is more
visible when training with a more complex dataset such
as CIFAR. There is an almost linear decrease in both the
number of parameters and FLOPS as the number of training
iterations increases, which suggests that magnitude based
pruning effects larger datasets more adversely, while corre-
lation methods can provide more stable compression.

7.4. Adding Neurons

We implemented the addition of neurons into a modified
version of Algorithm 1. However, we were unable to exceed
the initial accuracy of the network. The network appears to
be stuck in a local minimum from the pretraining and the
additional neurons cannot effectively improve the network.

We took a VGG-11 architecture on the CIFAR-10 dataset
and drastically reduced the number of filters in each convolu-
tional layer and tried to dynamically add neurons to increase
accuracy after pretraining. We were unable to exceed initial
accuracy and often could not recover initial accuracy.

8. Discussion

In our work, we explore multiple methods of pruning based
on activation statistics. There are more advance metrics
for pruning, that we may want to use. We can also use
a combination of multiple metrics, so we can incorporate
information from the activations and weights. There are
also methods to encourage the network to be more prunable
such as using a regularization term in the loss function.

We have a promising framework for the addition of neurons.
Our goal is to develop an efficient algorithm for simulta-
neously adding and removing neurons from a network to
efficiently train a compact neural network. More work needs
to be done in order to effectively retrain networks after the
addition of neurons. Some possible directions are adding
stochastic noise to all of the weights, selectively retraining
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certain neurons, and using different initializations of new
neurons. The development of effective expanding neurons
can lead to a robust dynamic neuron creation and removal
algorithm that unifies pruning and neuron expansion. We
aim to expand our dynamic neuron deletion algorithm to
Dynamic Adding and Removing of Neurons (DARN).

9. Conclusion

We were able to demonstrate significant results in pruning
both fully connected and convolutional networks with sig-
nificant decreases in model complexity while maintaining
accuracy. Our results suggest that pruning based on the acti-
vations of neurons is more effective than on magnitude based
metrics that localize network activity to single neurons. We
can observe that inter-dependencies between kernels in lay-
ers exist and can be used effectively to reduce model size.
Overall, our algorithm provides a solution to find an optimal
acceptable accuracy along with a compressed model, which
can be tuned for more generalized applications.
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